Властелин ДНК - Страница 17


К оглавлению

17

Шпинат дает нашему телу едва заметный, но очень важный сигнал. И тело начинает работать по-другому. Совсем как маточное молочко, направляющее развитие пчелы в другое русло. Так что да, по всей видимости, когда мы едим шпинат, мы меняем экспрессию наших генов.

Помните, я, рассказывая про Менделя и епископа Шаффтготча, упомянул, что во время опытов на мышах монах-ученый мог сделать открытие, не менее важное, чем законы наследственности? Теперь я расскажу вам о том, как эта революционная идея все-таки увидела свет.

Прошло более 90 лет с момента смерти Менделя, и в 1975 году генетики Артур Риггс и Робин Холидей, почти одновременно и независимо, поняли очень важную вещь. Американский и британский ученые предположили, что хоть гены и неизменны в течение жизни, их действие может меняться в зависимости от условий среды. В итоге получается вместо ожидаемого набора фиксированных состояний целый спектр характеристик. Именно из‑за этого несоответствия тогда считалось, что при рождении организмы представляют собой в генетическом смысле чистый лист.

И вот внезапно в научное сообщество была вброшена новая мысль. Что если гены меняются не только под действием невероятно медленного мутационного процесса? Но, как и идеи Менделя в свое время, теория Риггса и Холидея была всеми проигнорирована. Вновь теория генетиков, опередивших свое время, осталась без должного внимания.

И только четверть века спустя эти идеи и допущения, которые можно сделать полагаясь на них, нашли широкое признание. Произошло это благодаря потрясающей работе круглощекого весельчака Рэнди Джиртла.

Совсем как Мендель, Джиртл подозревал, что с наследственностью все не так просто, как может показаться на первый взгляд. И, как и Мендель, он принялся искать ответ в экспериментах на мышах.

Джиртл и его коллеги из Университета Дьюка экспериментировали на мышах агути. У этих зверюшек есть особый ген, из‑за которого они пухлее своих сородичей, а их шерсть светло-рыжего цвета. Полученные исследователями результаты просто поражали воображение. Оказалось, что достаточно изменить питание самок до зачатия, добавив немного дополнительных питательных веществ, таких как холин, витамин B и фолиевая кислота, и потомство будет выглядеть совсем иначе. Мышата будут меньшего размера, пестро-коричневые и в целом напоминать диких собратьев. Более того, как позже выяснилось, такие мыши еще и менее подвержены раку и диабету.

Абсолютно никаких различий в ДНК. При этом совершенно разные животные. И дело только в том, как экспрессируются гены. Всего лишь небольшая перемена в рационе матери помечала ген агути особым образом. В результате этот ген выключался и дальше передавался потомкам уже в выключенном виде.

А ведь это только начало. Исследования генетиков XXI века происходят в очень быстром темпе. Мышки Джиртла выглядят уже далеко не так впечатляюще на фоне многих последовавших более поздних работ по этой теме. Каждый день мы узнаем новые способы, позволяющие менять экспрессию генов. И не только у мышей, но и у людей тоже. Уже не стоит вопрос о том, можем ли мы хоть чего-то добиться на этом пути. Сейчас работа идет над тем, как в результате таких вмешательств достичь здоровья и долголетия нам и нашим потомкам.

То, что впервые предположили Риггс и Холидей, а потом Джиртл с коллегами подтвердили экспериментально, сейчас называется эпигенетикой. В широком смысле эпигенетика – это наука о том, как условия среды меняют экспрессию генов, не меняя при этом первичной структуры ДНК. Например, как в истории с пчелиными личинками и маточным молочком. Одно из самых захватывающих и быстро развивающихся направлений эпигенетики – изучение того, как и когда такие перемены наследуются. Причем не обязательно только на одно поколение.

Один из самых распространенных способов эпигенетического изменения экспрессии – метилирование ДНК. Есть много способов модифицировать нить ДНК, не затрагивая саму последовательность «букв». Когда происходит метилирование, к молекуле ДНК прикрепляется ярлычок из углерода и водородов в форме трехлистного клевера. В результате такого изменения – не важно, нового или унаследованного от предков – меняется программа поведения клеток. Ярлычки метилирования включают и выключают определенные гены. Так могут проявляться врожденные пороки, рак или диабет. Или же, напротив, из‑за изменения экспрессии у человека может быть крепкое здоровье, продлится время жизни или обнаружатся выдающиеся умственные способности.

И такие эпигенетические перемены происходят с нами в самые неожиданные моменты. Например, на летних занятиях для худеющих.

Ученые-генетики проследили за двумя сотнями испанских подростков, которые проходили десятинедельный курс интенсивных занятий, борясь с лишним весом. Выяснилось, что можно достаточно точно предсказать, кому из ребят удастся похудеть за лето. Как оказалось, скорость потери веса зависит от включения и выключения генов в 5 участках генома. Выходит, что часть занимавшихся была заранее эпигенетически запрограммирована на успех в похудании. В то время как остальных ждала неудача, несмотря на занятия под руководством компетентных тренеров и строгое соблюдение правильной диеты.

Постепенно мы учимся использовать знания, получаемые в таких исследованиях, для непосредственной выгоды носителя тех или иных эпигенетических меток. На примере ярлычков метилирования ДНК у испанских подростков стало очевидно, насколько важно знать свой эпигеном, если вы собираетесь, например, худеть. Ведь теперь понятно, что именно нужно выяснить, прежде чем начинать применять ту или иную методу борьбы с лишним весом. И такое знание позволит не только достичь успеха, но и избежать траты сил, денег и времени на занятия, которые просто обречены на провал.

17